Semantic Difference
Summarizing
ACROSS PROGRAM VERSIONS
2 programs – why?

Programs often change and evolve, raising the following interesting questions:

- Did the new version introduced new bugs or security vulnerabilities?
- Did the new version remove bugs or security vulnerabilities?
- More generally, how the behavior of the program change?
How Programs Change

Changes are small, programs are big

Can our work be $O(change)$ instead of $O(program)$?
Which procedures could be affected
Which procedures are affected
A control flow graph (CFG) is a directed graph:
- the nodes represent program instructions (assignments, conditions and returns)
- the edges represent possible flow of control

Every procedure is represented by a CFG, and the entire program is represented by a call graph.
Example

int p(int x) {
 if (x < 0)
 return -1;
 x--;
 if (x >= 1)
 return x+1;
 else
 while (x == 1);
 return 0;
}
Finite paths

Given a finite path \(\pi \) in a CFG from the entry node to the exit node, define

- The **reachability condition**, \(R_\pi \), is an FOL formula which guarantees that control will traverse \(\pi \).

- The **state transformation**, \(T_\pi \), is a function from initial state \(\tilde{x} \) to the final state obtained if control traverses \(\pi \) starting with \(\tilde{x} \).
Example

\[R_\pi(x) = x \geq 0 \land x - 1 \geq 1 \equiv x \geq 2 \]

\[T_\pi(x) = x \]

\[x := x - 1 \]

\[x < 0 \]

\[x \geq 1 \]

\[x == 1 \]

\[x == 1 \]

\[x \geq 1 \]

\[x := x - 1 \]

\[x > 0 \]

\[x >= 1 \]

\[x == 1 \]

\[x == 1 \]

\[return \ 0 \]

\[return \ x+1 \]

\[return \ -1 \]
Symbolic execution

- Input variables are given symbolic values
- Every execution path is explored individually (in some heuristic order)
- On every branch, a feasibility check is performed with a constraint solver
- A path constraint is computed for each path
- The reachability condition and state transformation can be constructed out of the path constraint
Procedure summary

- **Path summary** for a finite path \(\pi \) is the pair \((R_\pi, T_\pi)\)

- **Procedure summary** of procedure \(p \), \(sum_p \), is a set of disjoint path summaries

- Given a procedure summary \(s \), its **uncovered part** is \(\text{uncovered}_p = \neg \bigvee_{(r,t) \in s} r \)
Example

A possible summary for this procedure is
\[\text{sum}_p = \{(x < 0, -1), (x \geq 2, x)\} \]

and its uncovered part is
\[x \geq 0 \land x < 2 \]
Path difference for path π_1 in CFG_1 and path π_2 in CFG_2 is a triplet $(r, T_{\pi_1}, T_{\pi_2})$ such that:

$$r \leftrightarrow R_{\pi_1} \land R_{\pi_2} \land T_{\pi_1} \neq T_{\pi_2}$$
Example

\[r(x) \equiv R_{\pi_1}(x) \land R_{\pi_2}(x) \land T_{\pi_1}(x) \neq T_{\pi_2}(x) \equiv \]
\[0 \leq x < 2 \land 0 \leq x \leq 3 \land x \neq 2 \land 0 \neq x \]
\[\equiv x = 1 \]

\[R_{\pi_1}(x) = \]
\[x \geq 0 \land x - 1 < 1 \land x - 1 \neq 1 \]
\[\equiv 0 \leq x < 2 \]

\[T_{\pi_1}(x) = 0 \]

\[R_{\pi_2}(x) = \]
\[x \geq 0 \land x - 1 \leq 2 \land x - 1 \neq 1 \]
\[\equiv 0 \leq x \leq 3 \land x \neq 2 \]

\[T_{\pi_2}(x) = x \]
Difference Summary

Difference for a pair of procedures p_1, p_2 is a triplet:

- **changed**: set of path differences

 \[\text{changed_condition} = \bigvee_{(r,t_1,t_2) \in \text{changed}} r \]

- **termination_changed**: FOL formula for inputs where exactly one procedure terminates.

- **unchanged**: FOL formula for inputs where both procedures terminate with the same outputs, or both do not terminate.

\[\text{changed_condition} \lor \text{termination_changed} \lor \text{unchanged} \equiv \text{true} \]
Example

```c
int p1(int x) {
    if (x < 0)
        return -1;
    x--;
    if (x >= 1)
        return x+1;
    else
        while (x == 1);
    return 0;
}
```

```c
int p2(int x) {
    if (x < 0)
        return -1;
    x--;
    if (x > 2)
        return x+1;
    else
        while (x == 1);
    return 0;
}
```
Example

The difference summary is:

\[
\text{changed}_{p_1,p_2} := \{(x = 3, x, 0)\}
\]

\[
\text{termination_changed}_{p_1,p_2} := (x = 2)
\]

\[
\text{unchanged}_{p_1,p_2} := (x < 2) \lor (x > 3)
\]
Difference Summary - computation

- Difference summary is incomputable

- We compute under-approximations of changed and unchanged, ignoring termination_changed for now:
 - A set $computed_changed \subseteq changed$
 - A condition $computed_unchanged \rightarrow unchanged$
Difference Summary - computation

This gives us:

- An **under-approximation** of the difference:

 \[\text{computed_changed_condition} = \bigvee_{(r,t_1,t_2)\in\text{computed_changed}} r\]

- An **over-approximation** of the difference:

 \[\text{may_change} = \neg\text{computed_unchanged}\]
Logical relative procedure summary

- To abstract unknown behavior of the program analyzed, we will use uninterpreted functions

- For each pair of matched procedures p_1, p_2 we have
 - a common uninterpreted function UF_{p_1, p_2}
 - individual uninterpreted functions UF_{p_1}, UF_{p_2} as well
Logical relative procedure summary

Given two matching procedures p_1, p_2, their, we can construct their logical relative summary:

$$
\text{logSum}_{p_1}(\bar{x}, \bar{x}') = \left(\land_{(r,t) \in \text{sum}_{p_1}} r(\bar{x}) \rightarrow \bar{x}' = t(\bar{x}) \right) \land \\
\left(\text{computed}_\text{unchanged}_{p_1,p_2}(\bar{x}) \rightarrow \bar{x} = UF_{p_1,p_2}(\bar{x}) \right) \land \\
\left(\neg \text{computed}_\text{unchanged}_{p_1,p_2}(\bar{x}) \rightarrow \bar{x} = UF_{p_1}(\bar{x}) \right)
$$

$$
\text{logSum}_{p_2}(\bar{x}, \bar{x}') = \left(\land_{(r,t) \in \text{sum}_{p_2}} r(\bar{x}) \rightarrow \bar{x}' = t(\bar{x}) \right) \land \\
\left(\text{computed}_\text{unchanged}_{p_1,p_2}(\bar{x}) \rightarrow \bar{x} = UF_{p_1,p_2}(\bar{x}) \right) \land \\
\left(\neg \text{computed}_\text{unchanged}_{p_1,p_2}(\bar{x}) \rightarrow \bar{x} = UF_{p_2}(\bar{x}) \right)
$$

These summaries will be used to replace each call to the procedures.
Guiding symbolic execution – bottom up

```
int p(int x) {
    if (x > 1) {
        int y = -x;
        while (x > 1) {
            x--;
            y = y - x;
        }
    }
    x--;
    if (x < 2) {
        if (f(x))
            return x + 1;
    }
    return 0;
}
```

```
bool f1(int x) {
    return x >= 1;
}
```

```
bool f2(int x) {
    return x > 2;
}
```

\[\text{changed}_{f_1,f_2} = \{(x = 1 \lor x = 2, true, false)\} \]

\[\text{termination.changed}_{f_1,f_2} = false \]

\[\text{unchanged}_{f_1,f_2} = x \neq 1 \land x \neq 2 \]
Guiding symbolic execution – bottom up

- For each location in p compute a condition that guarantees that:
 - no different behavior is reachable from here

- Compute the weakest precondition of $computed_unchanged_{f_1,f_2}$ from $call\ f$
 - weakest condition guaranteeing f is not called with inputs satisfying $may_change_{f_1,f_2}$

- Use computed condition to restrict symbolic execution
Guiding symbolic execution – bottom up

```c
int p(int x) {
    if (x < 2) {
        int y = -x;
        while (x < 1) {
            x++;
            y = y - x;
        }
    }
    x--;  
    if (x < 2) {
        if (f(x)) {
            if (f(x))
                return x+1;
        }
    return 0;
}
```

\[\text{unchanged}_{f_1,f_2} = x \neq 1 \land x \neq 2 \]
Demand-driven refinement – top down

Since we are using uninterpreted functions, the discovered difference may not be feasible:

```c
int p1(int x) {
    if (x == 5)
        if (abs1(x)==0)
            return 0;
    return x;
}

int p2(int x) {
    if (x == 5)
        if (abs2(x)==0)
            return -1;
    return x;
}
```

\[\text{changed}_{p_1,p_2} := \{(x = 5 \land UF_{abs_1,abs_2}(x) = 0,0,-1)\} \]
Summary

We present a differential analysis method that is:

- Modular (analyses each procedure independently of its current use)
- Incremental
- Treats loops
- Computes over-approximation and under-approximation of inputs that produce different behavior
- Introduces abstraction in form of uninterpreted functions, and allows demand driven refinement
Thank you

QUESTIONS?